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Four-day-old male Wistar rats were exposed to intermittent high-altitude (IHA) hypoxia of
7000 m simulated in a hypobaric chamber (8 h/day, 5 days/week, 25 exposures). The con-
centration of individual phospholipids (PL) and fatty acid (FA) composition of phos-
phatidylcholine (PC), phosphatidylethanolamine (PE) and diphosphatidylglycerol (DPG)
were determined in right (RV) and left (LV) ventricles of rats adapted to chronic hypoxia
(40-day-old), rats after 30 days of recovery from hypoxic to normoxic conditions (70-day-
old) and both age-matched controls. The adaptation to IHA hypoxia decreased the concen-
tration of DPG in LV (by 10%) in comparison with normoxic control. In hypoxic group the
proportion of linoleic acid (18:2n-6) decreased; on the contrary, the proportion of ara-
chidonic (20:4n-6), docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids in-
creased in PC and PE of both RV and LV. As to DPG, IHA hypoxia caused a significant de-
crease in the n-6/n-3 ratio due to the increase in the 22:6n-3 proportion in RV. Thirty-day-
long recovery from hypoxic to normoxic conditions led to complete regression of the
hypoxic effect on FA composition in all PL. No difference in FA composition of PL was ob-
served between RV and LV in any experimental group. Numerous dietary studies with fish
oil supplements confirmed cardioprotective effect of n-3 polyunsaturated FA. We suppose
that their increased content in heart-membrane PL observed in this study independently on
a diet might contribute to higher tolerance of chronically hypoxic myocardium to ischemic
injury.

Keywords: Chronic hypoxia; Neonatal rat heart; Phospholipids; n-3 PUFA; Fatty acids;
Phosphatidylcholine; Biomembranes.
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Chronic myocardial hypoxia is the major pathophysiological feature of var-
ious cardiopulmonary diseases, like chronic obstructive pulmonary disease
and cyanotic congenital heart defects. It is also naturally encountered in fe-
tuses and in populations living at high altitudes. Permanent or intermittent
hypobaric hypoxia simulated in a low-pressure chamber is one of the rele-
vant experimental models of chronic hypoxia. It was shown that the adap-
tation to chronic hypoxia led to a variety of morphological, biochemical
and functional changes in order to maintain homeostasis with minimal
energy expenditure!. Pulmonary hypertension and right ventricular hyper-
trophy, the characteristic features of adaptation to chronic hypoxia, were
observed in both adults and newborn rats exposed to intermittent high-
altitude (IHA) hypoxia in the first postnatal week?3.

Besides an adverse influence on the cardiopulmonary system, it was well
established that the heart of animals adapted to chronic hypoxia exhibits
an increased tolerance to acute ischemic injury manifested as a reduction of
myocardial infarction size, improvement of post-ischemic contractile dys-
function and limitation of life-threatening ventricular arrhythmias*°. The
molecular mechanism of these phenomena is still unclear. Qualitative and
quantitative alterations of both extracellular matrix and myofibrillar pro-
teins in hypoxic myocardium together with a remodelling of cardiac me-
tabolism, activation of mitochondrial K,p channels and role of protein
kinase C should be taken in consideration®10, Cardiac protection by the
adaptation to chronic hypoxia may persist in adults as well as in newborn
rats long time after regression of other hypoxia-induced adaptive changes,
such as polycythemia, pulmonary hypertension and right ventricular hy-
pertrophy?!?!.

Recently we have published that the adaptation of adult rats to IHA
hypoxia substantially increased content of n-3 polyunsaturated fatty acids
(PUFA) in cardiac phospholipids’? (PL) that are known to be cardio-
protective from dietary studies!®. The great majority of experimental data
indicate that immature mammalian heart is more resistant to oxygen defi-
ciency as compared with adults®. Therefore the aim of this study was to
analyse the PL composition in cardiac membranes of young rats exposed to
IHA hypoxia during early postnatal period. We also analysed the reversibil-
ity of hypoxia-induced remodelling of membrane phospholipids in young
rats recovering from IHA hypoxia for one or four months under normoxic
conditions.
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EXPERIMENTAL

Animal Model

Male Wistar rats were exposed to IHA hypoxia on postnatal day 4. The IHA hypoxia was
simulated in a hypobaric chamber for 8 h/day, 5 days a week. Barometric pressure (Pg) was
lowered stepwise so that the level equivalent to the altitude of 7000 m (P; = 308 mm Hg,
41 kPa; P, = 65 Torr, 8.7 kPa) was reached after 13 exposures. The total number of expo-
sures was 25 (5 weeks). The age-matched control (normoxic) group of animals was kept for
the corresponding period at Py and Py, equivalent to altitude of 200 m (742 mm Hg,
98.9 kPa; 155 Torr, 20.7 kPa). All animals were fed the same vitamin-enriched, low fat (3.5%
by weight) standard diet ST1 (Velaz). The diet contained, by our analyses, these fatty acids
(FA): 1.5% of 14:0; 19.2% of 16:0; 2.2% of 16:1n-7; 5.5% of 18:0; 25.4% of 18:1n-9; 1.9% of
18:1n-7; 38.7% of 18:2n-6 and 4.2% of 18:3n-3. One third of adapted animals were em-
ployed 24 h after the last hypoxic exposure (40-day-old rats) whereas remaining animals
were kept under normoxic conditions for another 30 days (hypoxic recovery |, 70-day-old
rats) and for 4 months (hypoxic recovery Il, 160-day-old rats). The groups of age-matched
control animals (control, 40-day-old; recovery control I, 70-day-old; recovery control II,
160-day-old rats) were kept for corresponding period of time under normoxic conditions.
The investigation conforms to the Guide for the Care and Use of Laboratory Animals pub-
lished by the US National Institutes of Health (NIH Publication No. 85-23, rev 1996).

Lipid Analysis

Frozen samples of ventricular tissue were pulverized and homogenized. Phospholipids (from
100 mg wet tissue) were extracted in three consecutive steps according to the modified
method of Folch et al.'* The first extraction was performed with three portions (0.25 ml
each) of a chloroform-methanol mixture (1:3, 2:1 and 2:1) in a chilled mortar. Subsequent
extractions were performed with a mixture 2:1 (0.6 ml each), 0.9% NaCl in water (20% of
the volume of extract) was added and after vigorous shaking the lower lipid layer was dried
at 40 °C under a stream of nitrogen.

Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and diphosphatidylglycerol
(DPG) were separated by two-dimensional thin layer chromatography. Silica Gel H (Merck)
as a slurry of 22.5 g in 62 ml water containing 2.5 g of magnon (Merck) was spread in a
0.25 mm layer with a spreader (Desaga) on glass plates (20 x 20 cm). Solvent mixtures were
used according to the method of Rouser et al.'® Plasmalogen components of PC (PLPC) and
PE (PLPE) were analysed by the method of Horrocks et al.1® Silica Gel G (Merck) in 0.5 mm
layers was used for their separation. Phospholipid spots were detected with iodine vapours,
scraped off and analysed for phosphorus®®.

For FA analyses, phospholipids were separated on plates with Silica Gel H (0.5 mm) by
the method of Rouser et al.!® Spots were observed under UV light after staining with 0.005%
2,7-dichlorofluorescein in methanol, scraped off and stored in nitrogen atmosphere at
—-20 °C until the next day when the methyl esters were prepared. For the preparation of FA
methyl esters, sodium methanolate was added to tubes with silica gel, the tubes were then
incubated at room temperature for 60 min in the dark, methyl esters were extracted with
hexane and the extracts were evaporated under a stream of nitrogen and stored at -20 °C.
FA methyl esters were separated with a gas chromatograph Chrompack CP 438 A
(Chrompack, Middelburg, The Netherlands) using a medium-polar column CP WAX 52 CB
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(25 m x 0.25 mm i.d.). The oven temperature was programmed from 145-230 °C at
2 °C/min. Hydrogen was used as carrier gas. FAs were identified using a mixture of FA
methyl esters (Sigma-Aldrich Co., St.Louis, MO, U.S.A)).

Statistical Analyses

All results are expressed as means + S.E.M. The statistical significance of differences between
groups was determined by the two-way ANOVA and subsequent Student-Newman-Keuls
test. Differences were considered to be statistically significant at p < 0.05.

RESULTS AND DISCUSSION

Body and Heart Weight

Body and heart weight parameters of rats adapted to IHA hypoxia and
those at the recovery to normoxia for another 30 days and 4 months after
the last hypoxic exposure are presented in Table I. The adaptation to IHA
hypoxia significantly increased the heart weight as compared with age-
matched normoxic controls whereas the body weight was not changed.
This rise was due to the hypertrophy of right ventricles (RV; by 36%) and
left ventricles (LV; by 22%) to a moderate extent. The enlargement of heart
corresponds to the data of previous studies using the same experimental
model'’. Whereas both ventricles are under the influence of chronic
hypoxia, there is an RV-LV difference in hypertrophy stemming from in-
creased afterload of RV due to elevated cardiopulmonary resistance'®. We
did not find any retardation of body growth which was mostly observed
in other studies'?’. A probable explanation of this difference may be a hig-
her tolerance of young animals to the hypoxic stress in our experimental
sets. Thirty days after the termination of hypoxia (hypoxic recovery I), RV
and LV weights remained significantly elevated (by 11 and 13%, respec-
tively). Complete regression of all weight parameters was reached 4 months
after the termination of hypoxia (hypoxic recovery Il). Previous reports
demonstrated that some changes induced by IHA hypoxia (polycythemia,
pulmonary hypertension, RV hypertrophy) reversed in 4-5 weeks after re-
moval from the hypoxic atmosphere!®. However, an increased ratio of
collagenous/contractile proteins persisted in the period when the ventricu-
lar weights had been already normal'l. On the other hand, an increased re-
sistance of isolated RV to acute anoxia remained significantly higher even
4 months after removal of animals from hypoxic environment as compared
with normoxic controls'®.
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Phospholipid Concentration

Phospholipid concentration in LV and RV of rats adapted to IHA hypoxia,
that of rats recovering from hypoxia and of corresponding controls are
summarized in Table Il. PC, PE and DPG are major phospholipids either in
LV (accounting for 38.9, 38.7 and 13.3% of total PL, respectively) or RV (ac-
counting for 39.6, 37.8 and 13.2% of total PL, respectively) in the normoxic
heart tissue of 40-day-old rats. The proportion of PC and PE plasmalogen
component was similar in both LV and RV (4.9% of PC, 22.5% of PE and
5.4% of PC, 22.6% of PE, respectively). These proportions correspond to our
previously published data'®2°. The proportion of minor phospholipids (PI,
PS and SM) was 4.1, 2.8 and 2.2%, respectively, in LV and 3.9, 3.0 and
2.3%, respectively, in RV. The concentration of PL shows a mild increasing
trend between 40- and 70-day-old control rats in both ventricles. This is
consistent with the results of Novakova et al.?! describing the developmen-
tal rise in heart PL concentration in the period between postnatal day 2 and
adulthood in rats.

The adaptation of young rats to IHA hypoxia did not influence the con-
centration of heart phospholipids with the exception of a minor but signifi-
cant decrease in DPG (marker of mitochondrial membranes) concentration
in LV. On the other hand, our previous study using adult rats for adapta-
tion to IHA hypoxia had demonstrated a greater effect on phospholipid
concentration, namely in RV (decrease in DPG of 19% and in total PL of
7%)12. It is evident that the chronic hypoxia is more effective in membrane
remodelling in adult heart, in particular of mitochondrial membrane as the
greatest effect on DPG indicates. The relative stability of membrane PL con-
centration in newborn hearts exposed to chronic hypoxia is in a good ac-
cordance with other studies that have confirmed greater resistance of new-
born rat heart to stress conditions than that of adult one?. It is noteworthy
that the absence of a decrease in the concentration of major PL despite a
significant rise in the heart weight, which was observed in young rats,
might reveal that during hypertrophy induced by IHA hypoxia the propor-
tional rise in synthesis of membrane components (phospholipids and pro-
teins) and other components of myocardial tissue (collagenous and con-
tractile proteins) takes place. We have published that in the cardiomegaly
induced by pressure overload in rats in early postnatal period, the concen-
tration of all heart phospholipids decreased!®. This might be an example of
the disproportional rise in the synthesis of different tissue components
with the predominance of collagenous and contractile proteins. On the
other hand, we have also shown that in hypertrophied heart of young
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hyperthyroid rats, the concentration of all major PL, namely DPG, in-
creased. This is in a good accordance with accelerated maturation of
myocytes that is associated with intensive proliferation of sarcoplasmic
reticulum and mitochondrial membranes?°.

A complete recovery from the hypoxic effect on both concentration and
FA pattern in phospholipids was already reached after 30 days of recovery
to normoxic conditions (recovery 1). There was no difference in phospho-
lipid concentration and their FA pattern among any experimental groups
after 4 months of recovery to normoxic conditions (data are not presented).

Fatty Acid Composition in Major Phospholipids

The FA composition of PC, PE and DPG in LV and RV of all experimental
groups is demonstrated in Tables I1I-V. In control normoxic tissue, the pre-
dominant saturated FA (SFA) in PC were palmitic (16:0) and stearic (18:0)
acids accounting for about 43% of total FA; in PE the most abundant was
18:0, which together with 16:0 were equivalent to about 40% of total FA.
The main monounsaturated FA (MUFA) were oleic (18:1n-9) and vaccenic
(18:1n-7) acids in both PC and PE. The most plentiful polyunsaturated FA
(PUFA) were linoleic (18:2n-6), arachidonic (20:4n-6), docosahexaenoic
(22:6n-3) and docosapentaenoic (22:5n-3) acids. The higher content of
18:2n-6 in PC was counterbalanced by higher contents of 20:4n-6, 22:5n-3
and 22:6n-3 PUFA in PE. A comparison of 40- and 70-day-old normoxic ani-
mals reveals moderate ontogenetic changes in FA composition either in PC
(increase in n-6 and decrease in N-3 PUFA) or PE (increase in n-3 PUFA and
decrease in SFA) with the same trend in both ventricles. This is in a good
agreement with results of Gudmundsdottir et al.?? showing similar changes
in FA composition of PC and PE in rat heart during the same developmen-
tal period. The remodelling of FA composition in PL has been ascribed to
important nutritional, hormonal and functional changes that are in prog-
ress immediately after birth as well as in the period of the suckling/weaning
transition?s.

The SFA proportion of DPG in ventricles of normoxic rats was very low in
comparison with that in PC and PE (ca. 12% of total FA). The most domi-
nant FA in cardiac DPG was 18:2n-6, contributing by almost 70% of total
FA in 40-day-old rats. As to developmental changes in FA composition of
DPG between postnatal days 40 and 70, the most prominent observation
was a rise in the 18:2n-6 content and fall in 20:4n-6 and MUFA. Similar de-
velopmental changes in FA composition of DPG in rat heart between
postnatal days 2 and 60 have been already presented?®.
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The adaptation to IHA hypoxia led to an increase in 18:0 and substantial
decrease in 18:2n-6 proportions, which were compensated by an increase in
20:4n-6, 22:5n-3 and 22:6n-3 FA proportions in both PC and PE. These
changes decreased the n-6/n-3 PUFA ratio and increased the 20:4n-6/
18:2n-6 PUFA ratio. In DPG, IHA hypoxia caused a significant decrease in
the n-6/n-3 PUFA ratio due to the increase in 22:6n-3 FA in the RV with a
similar trend in LV. No left-right ventricle difference in FA composition of
PC, PE and DPG was found in any experimental group of rats. A similar
effect in FA remodelling of phospholipids was also observed in hearts of
adult rats that were exposed to IHA hypoxia under equal conditions by
Jezkova et al.*?

The decrease in the n-6/n-3 PUFA and the increase in the 20:4n-6/18:2n-6
PUFA ratio are the main features in remodelling of the FA proportion in
heart PL of young rats induced by IHA hypoxia. During long-term exposure
to hypoxia, numerous metabolic pathways can participate in the remodel-
ling of FA composition in membrane phospholipids; deacylation-
reacylation cycle where phospholipases A, and acyltransferases cooperate,
desaturation-elongation processes and enzymes of phospholipid “de novo”
synthesis belongs to those reactions?4. The increase in the 20:4n-6/18:2n-6
ratio might be caused by activation of desaturation-elongation pathway of
linoleic acid. The presence of both A-6 desaturase and elongase in cardiac
myocytes was published?. In this study we have shown that the decreased
content of 18:2n-6 was compensated by elevation of 22:6n-3, which is a
poorer substrate for phospholipase A, than n-6 PUFA are?6. Moreover,
acyl-CoA synthetase with preferential affinity to 22:6n-3 was found in car-
diac tissue?’. Kawaguchi et al. reported?® that hypoxia led to phospholipid
breakdown due to the activation of phospholipase A,. We speculate that in-
creased oxidative stress could play an important role in the process of mem-
brane phospholipid remodelling observed in chronically hypoxic heart.
Chronic hypoxia is associated with increased oxidative stress as was evi-
denced by marked lipid peroxidation?®. It was shown that phospholipase A,
preferentially hydrolyses peroxid fatty acid esters in phospholipids thus
protecting membranes from oxidative injury°,

The most important observation in our study was the increase in propor-
tion of n-3 PUFA to the detriment of n-6 PUFA following adaptation to
hypoxia. Phospholipids, representing structural component of membranes,
create fluid environment for membrane receptors, transporters and en-
zymes. Moreover, they also serve as a source of the signal molecules partici-
pating in signal transduction pathways, e.g., phosphoinositides, diacyl-
glycerols (DAGs), free fatty acids, eicosanoids etc.3! There are many pieces
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of evidence that the changes in FA composition of cardiac membranes
lead to alterations of lipid signal molecules and thus to functional changes.
Dietary n-3 PUFA are lipids with very potent cardioprotective effect!s,
The beneficial role of n-3 PUFA in increased resistance of heart tissue to
ischemia-reperfusion injury has been supported by numerous studies show-
ing that dietary supplementation with fish oils increased the content of n-3
PUFA in rat heart and attenuated the incidence of life-threatening ar-
rhytmias and myocardial infarction3?. The prevention of sudden cardiac
death by n-3 PUFA was verified by the numerous clinical trials3. On the
other hand, independently on diet, some stress conditions such as high
doses of catecholamines®*, hyperthyroidism?® or pressure overload3® in-
creased n-3 PUFA content in heart membrane phospholipids. The mecha-
nism of this fatty acid remodelling induced by stress is not clear yet. How-
ever, it was demonstrated that chronic high altitude hypoxia increases the
tolerance of the heart to all major endpoints of acute ischemia-reperfusion
injury®6. Among many factors involved in this mechanism the activation of
mitochondrial ATP-sensitive potassium (mitoK,p) channels has been pro-
posed®. Activity of these channels is regulated by protein kinase C37 (PKC)
which is activated by DAGs, the products of phospholipid breakdown. It
has been reported that the activation of PKC in cardiomyocytes is depend-
ent on certain DAG species®®.

The functional significance of changes in the level of n-3 and n-6 PUFA
of phospholipids induced by chronic hypoxia may relate to the tolerance of
heart to stress conditions. The effect of PUFA may be beneficial or detri-
mental depending on their proportion and antioxidative capacity of heart
tissue'3:34,

CONCLUSIONS

The most important effect of adaptation of heart to chronic hypoxia ob-
served in our study was the increase in proportion of n-3 PUFA to the detri-
ment of n-6 PUFA in phospholipids. The observed remodeling of mem-
brane phospholipids could have several consequences: changes in mem-
brane fluidity, susceptibility to oxidative stress, quality of eicosanoids,
quality of lipid signal molecules, relating activation of protein kinase C iso-
forms and mitoK,» channels. At present, we do not know how important
role the shift in PUFA proportion in phospholipids plays in stress tolerance.
However, the beneficial influence of diet supplemented with fish oils en-
riched in n-3 PUFA was proved in many clinical studies, and antiarrhytmic
effect of n-3 PUFA was well documented in experiments in vitro. We be-
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lieve that n-3 PUFA shift observed in this study may participate in en-
hanced tolerance of chronically hypoxic heart to ischemic injury. However,
it must be taken into account that the observed changes in FA composition
were reversible within thirty days after recovery to normoxic conditions
and thus could not contribute to later protective effect.

We conclude that changes in FA composition of membrane phospho-
lipids suggest the presence of general adaptation reaction of heart tissue
as an answer to stress stimuli. Besides, these changes may lead to a better
preservation of membrane integrity and thereby contribute to improved
ischemic tolerance of chronically hypoxic heart.
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